当前位置: 首页 > news >正文

opencv如何在仿射变换后保留完整图像内容并自动裁剪

背景

我需要对一张图像应用仿射变换,并确保变换后的图像内容不发生信息丢失。为此,需要根据变换后图像的四个角点,计算其最小外接矩形,并以此矩形为区域裁剪变换后的图像。目标是获得一个完整、有效保留原始图像信息的最小包围图像区域。

代码如下

int affineTransform(const std::string& srcImagePath,const std::string& dstImagePath,const Point* srcPoints,const Point* dstPoints,double* affineParams,int debugFlag
) {// 1. 加载原始图像cv::Mat srcImage = cv::imread(srcImagePath, cv::IMREAD_UNCHANGED);if (srcImage.empty()) {std::cerr << "Failed to load image: " << srcImagePath << std::endl;return -1;}// 2. 输入点校验if (!srcPoints || !dstPoints) return -2;constexpr int REQUIRED_POINTS = 3;std::vector<cv::Point2f> srcPts, dstPts;for (int i = 0; i < REQUIRED_POINTS; ++i) {srcPts.emplace_back(srcPoints[i].x, srcPoints[i].y);dstPts.emplace_back(dstPoints[i].x, dstPoints[i].y);}// 3. 获取仿射变换矩阵并提取参数cv::Mat affineMat = cv::getAffineTransform(srcPts, dstPts);extractAffineParameters(affineMat, affineParams);// 4. 原图四角及变换后的边界框std::vector<cv::Point2f> corners = {{0, 0},{static_cast<float>(srcImage.cols), 0},{static_cast<float>(srcImage.cols), static_cast<float>(srcImage.rows)},{0, static_cast<float>(srcImage.rows)}};std::vector<cv::Point2f> transformedCorners;cv::transform(corners, transformedCorners, affineMat);cv::Rect boundingBox = cv::boundingRect(transformedCorners);// 5. 计算需要填充的边界int padLeft = boundingBox.x < 0 ? -boundingBox.x : 0;int padTop  = boundingBox.y < 0 ? -boundingBox.y : 0;// 6. 根据通道数设置白色边界cv::Scalar borderColor;switch (srcImage.channels()) {case 1: borderColor = cv::Scalar(255); break;case 3: borderColor = cv::Scalar(255, 255, 255); break;case 4: borderColor = cv::Scalar(255, 255, 255, 255); break;default: throw std::runtime_error("Unsupported number of channels.");}// 7. 执行图像扩展cv::Mat paddedImage;cv::copyMakeBorder(srcImage, paddedImage, padTop, 0, padLeft, 0, cv::BORDER_CONSTANT, borderColor);// 8. 更新坐标后重新计算变换矩阵cv::Point2f offset(padLeft, padTop);for (auto& pt : srcPts) pt += offset;for (auto& pt : dstPts) pt += offset;cv::Mat adjustedAffineMat = cv::getAffineTransform(srcPts, dstPts);// 9. 仿射变换到目标图像cv::Size dstSize(boundingBox.width + padLeft, boundingBox.height + padTop);cv::Mat dstImage;cv::warpAffine(paddedImage, dstImage, adjustedAffineMat, dstSize, cv::INTER_LINEAR, cv::BORDER_CONSTANT, borderColor);// 10. 如果变换后图像偏移,进行裁剪if (boundingBox.x > 0 || boundingBox.y > 0) {boundingBox.x = std::max(boundingBox.x,0);boundingBox.y = std::max(boundingBox.y,0);int cropX = std::min(boundingBox.x, dstImage.cols);int cropY = std::min(boundingBox.y, dstImage.rows);int cropWidth  = std::max(0, dstImage.cols - cropX);int cropHeight = std::max(0, dstImage.rows - cropY);cv::Rect validRoi(cropX, cropY, cropWidth, cropHeight);dstImage = dstImage(validRoi).clone();}// 11. 调试信息if (debugFlag) {std::cout << "[AffineTransform Debug Info]\n";std::cout << "Original Corners: "; printPoints(corners);std::cout << "Transformed Corners: "; printPoints(transformedCorners);std::cout << "Bounding Box: x=" << boundingBox.x << ", y=" << boundingBox.y<< ", w=" << boundingBox.width << ", h=" << boundingBox.height << "\n";std::cout << "Padding: left=" << padLeft << ", top=" << padTop << "\n";std::cout << "Affine Matrix:\n" << affineMat << "\n";std::cout << "Adjusted Affine Matrix:\n" << adjustedAffineMat << "\n";std::cout << "Output Size: " << dstImage.cols << " x " << dstImage.rows << "\n";}// 12. 保存图像return cv::imwrite(dstImagePath, dstImage) ? 0 : -3;
}

解释

随便在网上找一下放射变换的教程,可以知道,变换后的图像,经常是缩小且周围白边很大。因为一不小心就会过界导致图像信息丢失。一般的教程也不处理最小外接矩形。
思路如下:
首先是将原图的四个角进行放射变换。由变换后的四个角得到最小包围盒:cv::Rect boundingBox = cv::boundingRect(transformedCorners);

如果boundingBox 左上角顶点有负数,则说明变换后的图像到了第234象限,我们需要向上,向左扩展图像。这是第七步做的事情。得到扩充后的图像

将图像扩充白边以后,我们原图的坐标系其实被改变了,即向左上方移动了。所以我们要把原来计算仿射变换矩阵的三个点平移,重新计算仿射变换。

我们使用扩充后的图像和第二次计算的放射变换进行变换。得到目标图像。

第十步,如果变换后的图像包围盒的左上点并不是原点,我们还要进行剪裁

如此,才能得到最小矩形包围的图像

http://www.lqws.cn/news/150607.html

相关文章:

  • 数学建模-嘉陵江铊污染事件解题全过程文档及程序
  • 论文速读《DexWild:野外机器人策略的灵巧人机交互》
  • Uniapp 二维码生成与解析完整教程
  • SpringBoot自动化部署全攻略:CI/CD高效实践与避坑指南
  • 空间利用率提升90%!小程序侧边导航设计与高级交互实现
  • 苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
  • 钉钉 - 机器人消息推送(签名版)
  • Python Rio 【图像处理】库简介
  • ECB(电子密码本,Electronic Codebook) 和 CBC(密码分组链接,Cipher Block Chaining)区分于用途
  • EXCEL如何快速批量给两字姓名中间加空格
  • Python使用总结之Mac安装docker并配置wechaty
  • Ntfs!ReadIndexBuffer函数分析之nt!CcGetVirtualAddress函数之nt!CcGetVacbMiss
  • Prompt Tuning:生成的模型文件有什么构成
  • NoSQL——Redis配置与优化
  • 拆解实战案例:电商ERP管理系统从需求到原型全流程设计
  • vue2中使用jspdf插件实现页面自定义块pdf下载
  • 深入解析光敏传感技术:嵌入式仿真平台如何重塑电子工程教学
  • ML Kit与YOLO:移动AI与实时检测终极对决
  • 数据分析实战2(Tableau)
  • 【DAY40】训练和测试的规范写法
  • AI系统负载均衡与动态路由
  • 联邦学习架构深度分析:支持多家医院协作训练AI模型方案分析
  • gc2053驱动学习笔记
  • 微服务架构下的服务注册与发现:Eureka 深度解析
  • 4.3 HarmonyOS NEXT AI驱动的交互创新:智能助手、实时语音与AR/MR开发实战
  • redis分布式锁的实际业务使用和底层基本原理 对比 lock trylock
  • Linux环境-通过命令查看zookeeper注册的服务
  • DisplayPort 2.0协议介绍(1)
  • x86 汇编中的【条件跳转指令】:从基础到扩展的全面解析(查表版)
  • 新建网站部署流程