当前位置: 首页 > news >正文

PostgreSQL的扩展 pg_buffercache

PostgreSQL的扩展 pg_buffercache

pg_buffercache 是 PostgreSQL 提供的一个关键性能监控扩展,用于观察共享缓冲区中的页面缓存情况。

一、扩展概述

  • 功能:实时查看共享缓冲区的使用情况
  • 用途
    • 性能分析与调优
    • 缓存命中率分析
    • 识别热点数据
    • 内存配置优化
  • 版本兼容:PostgreSQL 8.1+

二、安装与基本使用

1. 安装方法

CREATE EXTENSION pg_buffercache;-- 验证安装
SELECT * FROM pg_available_extensions WHERE name = 'pg_buffercache';

2. 核心视图说明

-- 查看视图结构
\d pg_buffercache-- 主要字段说明:
/*
bufferid    - 缓冲区ID
relfilenode - 关联的文件节点
reltablespace - 表空间OID
reldatabase - 数据库OID
relblocknumber - 块号
isdirty     - 是否为脏页
usagecount  - 使用计数(时钟算法)
pinning_backend - 钉住该缓冲区的后端PID
*/

三、关键查询示例

1. 查看缓存分布

SELECT c.relname,count(*) AS buffers,round(100.0 * count(*) / (SELECT setting FROM pg_settings WHERE name='shared_buffers')::integer, 2) AS "% of cache"
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname
ORDER BY buffers DESC
LIMIT 10;

2. 识别热点表

SELECT c.relname,b.usagecount,count(*) AS buffers
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname, b.usagecount
ORDER BY c.relname, b.usagecount;

3. 检查脏页情况

SELECT c.relname,count(*) FILTER (WHERE b.isdirty) AS dirty_buffers,count(*) AS total_buffers
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
GROUP BY c.relname
HAVING count(*) FILTER (WHERE b.isdirty) > 0
ORDER BY dirty_buffers DESC;

四、高级分析技术

1. 缓存命中率计算

WITH cache_data AS (SELECT c.relname,count(*) AS cached_blocksFROM pg_buffercache bJOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)GROUP BY c.relname
),
table_stats AS (SELECT relname,heap_blks_read + heap_blks_hit AS total_read,heap_blks_hit AS hitsFROM pg_statio_user_tables
)
SELECT t.relname,t.hits,t.total_read,round(t.hits * 100.0 / NULLIF(t.total_read, 0), 2) AS hit_ratio,c.cached_blocks
FROM table_stats t
JOIN cache_data c ON t.relname = c.relname
ORDER BY t.total_read DESC;

2. 索引缓存效率分析

SELECT c.relname AS index_name,count(*) AS cached_blocks,pg_size_pretty(count(*) * 8192) AS cached_size
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
WHERE c.relkind = 'i'
GROUP BY c.relname
ORDER BY cached_blocks DESC;

五、生产环境应用

1. 共享内存配置调优

-- 计算当前缓存利用率
SELECT (SELECT setting FROM pg_settings WHERE name='shared_buffers')::int AS shared_buffers,count(*) AS used_buffers,round(count(*) * 100.0 / (SELECT setting FROM pg_settings WHERE name='shared_buffers')::int, 2) AS "% used"
FROM pg_buffercache;-- 调整建议(需重启):
-- shared_buffers = 25% of total RAM (for dedicated DB servers)

2. 检查缓存竞争

SELECT c.relname,count(DISTINCT b.pinning_backend) AS pinned_by,count(*) AS total_blocks
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
WHERE b.pinning_backend IS NOT NULL
GROUP BY c.relname
ORDER BY pinned_by DESC;

六、与其它工具集成

1. 结合pg_stat_statements

-- 找出高频查询访问的表
WITH top_tables AS (SELECT query,(regexp_matches(query, 'FROM\s+(\w+)', 'gi'))[1] AS tablenameFROM pg_stat_statementsORDER BY calls DESCLIMIT 10
)
SELECT t.tablename,count(*) AS buffers,s.query
FROM pg_buffercache b
JOIN pg_class c ON b.relfilenode = pg_relation_filenode(c.oid)
JOIN top_tables t ON c.relname = t.tablename
JOIN pg_stat_statements s ON t.query = s.query
GROUP BY t.tablename, s.query;

2. 导出缓存快照

# 生成缓存报告
psql -c "COPY (SELECT * FROM pg_buffercache) TO '/tmp/buffer_cache_snapshot.csv' WITH CSV HEADER"

七、性能注意事项

  1. 查询开销

    • pg_buffercache需要获取共享缓冲区锁
    • 生产环境避免高频查询(>1次/分钟)
    • 建议在维护窗口或低峰期执行
  2. 替代方案

    -- 轻量级替代(不显示具体内容)
    SELECT * FROM pg_stat_bgwriter;-- 检查点活动监控
    SELECT * FROM pg_stat_checkpoints;
    

八、扩展限制

  1. 需要超级用户权限
  2. 仅显示当前数据库集群的缓存
  3. 不显示系统目录缓存细节(除非明确查询)
  4. 结果具有瞬时性,可能很快变化

pg_buffercache 是PostgreSQL性能调优的核心工具之一,合理使用可以帮助DBA优化内存配置、识别性能瓶颈,但需要注意查询本身对系统性能的影响。

更详细的内容请查看官方文档:

https://www.postgresql.org/docs/17/pgbuffercache.html
http://www.lqws.cn/news/139933.html

相关文章:

  • ubuntu 常用操作指令(与域控制器交互相关)
  • 使用qt 定义全局钩子 捕获系统的键盘事件
  • 聊聊芯片Debug模块及其应用
  • 如何快速找出某表的重复记录 - 数据库专家面试指南
  • 618浴室柜推荐,小户型浴室柜怎么选才省心?
  • JAVA 集合进阶 Map集合的实现类 TreeMap
  • 第八部分:第三节 - 事件处理:响应顾客的操作
  • C++ 变量二
  • c++中char *p指针指向字符串输出问题
  • day46 python预训练模型补充
  • Java八股文——Redis篇
  • CCPC题目
  • Java 创建线程池的几种方式
  • .net jwt实现
  • Linux-linux和windows创建新进程的区别以及posix_spawn
  • ROS 2 环境下使用 Astra Pro 深度相机实现目标距离检测及远程可视化全流程总结
  • 卫星的“太空陀螺”:反作用轮如何精准控制姿态?
  • JavaWeb:前端工程化-ElementPlus
  • Python应用函数的定义与调用(一)
  • 嵌入式分析利器:DuckDB与SqlSugar实战
  • 前端组件推荐 Swiper 轮播与 Lightbox 灯箱组件深度解析
  • 半导体制冷片(Thermoelectric Cooler,TEC)
  • vue封装gsap自定义动画指令
  • JAVA容器
  • BERT vs Rasa 如何选择 Hugging Face 与 Rasa 的区别 模型和智能体的区别
  • 【拓扑】1639.拓扑排序
  • 六种高阶微分方程的特解(原创:daode3056)
  • 近端策略优化(PPO,Proximal Policy Optimization)
  • JavaScript 深入探索:高级应用与前沿技术
  • Java异步编程难题拆解技术