当前位置: 首页 > news >正文

深入理解 Agent 与 LLM 的区别:从智能体到语言模型


🌟深入理解 Agent 与 LLM 的区别:从智能体到语言模型

本文将用通俗易懂的方式,结合实际案例,详细解释「Agent」和「LLM」的区别,帮助你理清它们的定位与关系。


📚目录

  • 一、什么是 LLM?

  • 二、什么是 Agent?

  • 三、类比理解:LLM 是大脑,Agent 是人

  • 四、Agent = LLM + 工具链 + 控制器

  • 五、实际案例对比:LLM vs Agent

  • 六、总结:两者的本质区别

  • 七、结语:从“会说话”到“能行动”


一、什么是 LLM?

LLM(Large Language Model,大语言模型) 是通过海量语料训练而来的语言模型,核心能力是理解和生成自然语言。

它的本质是一个“语言预测引擎”,根据输入内容生成合适的自然语言回应。

✅ 举个例子:

我们问 GPT:

请写一首关于春天的诗。

它可能会回答:

春风拂面绿芽开,
百花争艳燕归来。
溪水潺潺鸣不尽,
一年之计在春栽。

说明:LLM 可以写诗、答题、聊天,但它不会主动行动或执行任务


二、什么是 Agent?

Agent(智能体) 是一种具备自主决策能力的智能系统,它不仅依赖 LLM,还能使用工具、拥有记忆、执行任务。

可以理解为「Agent = LLM + 工具 + 状态 + 计划器」。

✅ 举个例子:

我们给 Agent 一个任务:

请查询今天北京的天气,并发一封穿搭建议的邮件给我。

Agent 会:

  1. 使用天气 API 获取数据;

  2. 基于天气写穿搭建议;

  3. 通过邮件 API 发出邮件;

  4. 返回状态:"邮件已发送"。

这是一种真正的「执行型 AI」。


三、类比理解:LLM 是大脑,Agent 是人

类比角度LLMAgent
本质语言预测模型智能任务系统
类比大脑有意识的人
功能理解/生成语言感知环境+规划+行动
举例GPT-4、ClaudeAutoGPT、LangChain Agent

📌 通俗解释:

  • LLM 是大脑,只能“说话”,无法“行动”;

  • Agent 是一个人,既能思考,又能行动、执行工具、管理流程。


四、Agent = LLM + 工具链 + 控制器

Agent 的构成模块如下:

模块说明
🧠 LLM负责理解语言、生成内容
🧾 记忆模块保存对话历史或状态
🛠 工具集成如搜索、计算器、数据库、API 调用
🧭 控制器(Planner/Executor)决定执行顺序、调用工具完成任务

🧩 举例框架:

  • AutoGPT

  • LangChain Agent

  • OpenAI Assistants API


五、实际案例对比:LLM vs Agent

🎯 任务:

请规划一个3天的杭州旅游,并预订景点门票与酒店。

🤖 纯 LLM:

Day 1: 西湖游船、雷峰塔  
Day 2: 灵隐寺、九溪十八涧  
Day 3: 河坊街购物  
建议自行预订门票与酒店。

LLM 只是“说”,不具备操作能力。


🧠 Agent:

  1. 查询天气 → 过滤天气好的日期;

  2. 查找热门景点 → 排序推荐;

  3. 查询开放时间;

  4. 自动调用平台 API 预订门票;

  5. 查找合适酒店 → 预订;

  6. 发送结果报告。

Agent 不仅“说”,还会“做”,是真正意义上的 AI 助理


六、总结:LLM 与 Agent 的本质区别

对比维度LLMAgent
是否有目标❌ 没有,只对输入做出回应✅ 有明确目标与执行路径
工具调用能力❌ 不具备(除非扩展)✅ 可自由调用各种工具
状态管理能力❌ 无状态✅ 具备短期/长期记忆
是否能分步执行任务❌ 只能一次性生成文本✅ 支持多步骤任务规划与执行
举例GPT-4、文心一言LangChain Agent、AutoGPT、ChatDev

七、结语:从“会说话”到“能行动”

当前 LLM 的能力非常强大,但要真正落地复杂业务或自动化任务,必须进化为 Agent 系统。Agent 拥有目标感、执行力和工具整合能力,是 LLM 的重要延伸。

LLM 是 AI 革命的引擎,而 Agent 才是开启未来的钥匙。

http://www.lqws.cn/news/202357.html

相关文章:

  • 反向传播的核心是什么:计算损失函数对可训练参数的梯度=== 损失函数能通过计算图连接到可训练参数
  • 快速运行Dify前端,无需搭建后端环境
  • CADisplayLink、NSTimer、GCD定时器
  • 变幻莫测:CoreData 中 Transformable 类型面面俱到(一)
  • opencv_stereoRectify源码解析
  • 客户端和服务器已成功建立 TCP 连接【输出解析】
  • Clahs——问题解决:软件所有节点均超时
  • 能上Nature封面的idea!强化学习+卡尔曼滤波
  • C++之STL--list
  • 智能客服路由实战之RunnableBranch条件分支
  • 复旦联合百度发布Hallo4:让AI肖像“活”起来!新型扩散框架实现高保真音频驱动动画生成!
  • Python 函数全攻略:函数进阶(生成器、闭包、内置函数、装饰器、推导式)
  • AI大模型:(二)3.2 Llama-Factory微调训练deepseek-r1实践
  • 微前端架构下的B端页面设计:模块化与跨团队协作的终极方案
  • 【图像处理基石】如何构建一个简单好用的美颜算法?
  • 向 AI Search 迈进,腾讯云 ES 自研 v-pack 向量增强插件揭秘
  • JAVA理论第五章-JVM
  • JVM 垃圾回收器 详解
  • LVGL手势识别事件无上报问题处理记录
  • C++图书管理
  • 《前缀和》题集
  • [yolov11改进系列]基于yolov11融合改进检测头特征融合模块AFPN的python源码+训练源码
  • CCPC chongqing 2025 H
  • 振动力学:多自由度系统
  • AI书签管理工具开发全记录(十五):TUI基本逻辑实现与数据展示
  • 【Hot 100】295. 数据流的中位数
  • PyTorch 中contiguous函数使用详解和代码演示
  • Linux(14)——库的制作与原理
  • 华为云Flexus+DeepSeek征文 | 从零到一:用Flexus云服务打造低延迟联网搜索Agent
  • 为什么React列表项需要key?(React key)(稳定的唯一标识key有助于React虚拟DOM优化重绘大型列表)