波动方程解法及反射波讨论
题目
问题 5.
(a) 求解以下偏微分方程系统:
{ u t t − c 2 u x x = 0 , t > 0 , x > 0 , u ∣ t = 0 = ϕ ( x ) , u t ∣ t = 0 = c ϕ ′ ( x ) , x > 0 , ( u x + α u t ) ∣ x = 0 = 0 , t > 0 \begin{cases} u_{tt} - c^2 u_{xx} = 0, & t > 0, x > 0, \\ u|_{t=0} = \phi(x), & u_t|_{t=0} = c\phi'(x), & x > 0, \\ (u_x + \alpha u_t)|_{x=0} = 0, & t > 0 \end{cases} ⎩⎪⎨⎪⎧utt−c2uxx=0,u∣t=0=ϕ(x),(ux+αut)∣x=0=0,t>0,x>0,ut∣t=0=cϕ′(x),t>0x>0,
分别在区域 x > c t x > ct x>ct 和 0 < x < c t 0 < x < ct 0<x<ct 中求解。
(b) 讨论反射波。特别地,考虑 ϕ ( x ) = e i k x \phi(x) = e^{ikx} ϕ(x)=eikx。
解答
(a) 求解偏微分方程系统
考虑一维波动方程 u t t − c 2 u x x = 0 u_{tt} - c^2 u_{xx} = 0 utt−c2uxx=0 在半直线 x > 0 x > 0 x>0 上的初边值问题。初始条件为 u ( x , 0 ) = ϕ ( x ) u(x,0) = \phi(x) u(x,0)=ϕ(x) 和 u t ( x , 0 ) = c ϕ ′ ( x ) u_t(x,0) = c \phi'(x) ut(x,0)=cϕ′(x),边界条件为 ( u x + α u t ) ∣ x = 0 = 0 (u_x + \alpha u_t)|_{x=0} = 0 (ux+αut)∣x=0=0。根据波动方程的特性,解在不同区域有不同形式,具体取决于点 ( x , t ) (x,t) (x,t) 是否受到边界 x = 0 x = 0 x=0 的影响(影响以速度 c c c 传播)。因此,解需在区域 x > c t x > ct x>ct 和 0 < x < c t 0 < x < ct 0<x<ct 分别求解。
-
在区域 x > c t x > ct x>ct:
该区域内的点尚未受到边界影响,因为扰动从边界传播到点 x x x 需时间 t > x / c t > x/c t>x/c,而 x > c t x > ct x>ct 意味着 t < x / c t < x/c t<x/c,故边界效应未到达。解仅由初始条件决定。
波动方程的通解为 u ( x , t ) = f ( x − c t ) + g ( x + c t ) u(x,t) = f(x - ct) + g(x + ct) u(x,t)=f(x−ct)+g(x+ct)。应用初始条件:- u ( x , 0 ) = f ( x ) + g ( x ) = ϕ ( x ) u(x,0) = f(x) + g(x) = \phi(x) u(x,0)=f(x)+g(x)=ϕ(x)
- u t ( x , 0 ) = − c f ′ ( x ) + c g ′ ( x ) = c ϕ ′ ( x ) u_t(x,0) = -c f'(x) + c g'(x) = c \phi'(x) ut(x,0)=−cf′(x)+cg′(x)=cϕ′(x)
对第一式求导得 f ′ ( x ) + g ′ ( x ) = ϕ ′ ( x ) f'(x) + g'(x) = \phi'(x) f′(x)+g′(x)=ϕ′(x),与第二式 − f ′ ( x ) + g ′ ( x ) = ϕ ′ ( x ) -f'(x) + g'(x) = \phi'(x) −f′(x)+g′(x)=ϕ′(x) 联立:
相加得 2 g ′ ( x ) = 2 ϕ ′ ( x ) ⇒ g ′ ( x ) = ϕ ′ ( x ) ⇒ g ( x ) = ϕ ( x ) + C 2g'(x) = 2\phi'(x) \Rightarrow g'(x) = \phi'(x) \Rightarrow g(x) = \phi(x) + C 2g′(x)=2ϕ′(x)⇒g′(x)=ϕ′(x)⇒g(x)=ϕ(x)+C( C C C 常数)
相减得 − 2 f ′ ( x ) = 0 ⇒ f ′ ( x ) = 0 ⇒ f ( x ) = A -2f'(x) = 0 \Rightarrow f'(x) = 0 \Rightarrow f(x) = A −2f′(x)=0⇒f′(x)=0⇒f(x)=A( A A A 常数)
代入第一式: A + ( ϕ ( x ) + C ) = ϕ ( x ) ⇒ A + C = 0 ⇒ C = − A A + (\phi(x) + C) = \phi(x) \Rightarrow A + C = 0 \Rightarrow C = -A A+(ϕ(x)+C)=ϕ(x)⇒A+C=0⇒C=−A
因此, f ( x ) = A f(x) = A f(x)=A, g ( x ) = ϕ ( x ) − A g(x) = \phi(x) - A g(x)=ϕ(x)−A。通解为:
u ( x , t ) = f ( x − c t ) + g ( x + c t ) = A + ϕ ( x + c t ) − A = ϕ ( x + c t ) u(x,t) = f(x - ct) + g(x + ct) = A + \phi(x + ct) - A = \phi(x + ct) u(x,t)=f(x−ct)+g(x+ct)=A+ϕ(x+ct)−A=ϕ(x+ct)
验证: - u ( x , 0 ) = ϕ ( x ) u(x,0) = \phi(x) u(x,0)=ϕ(x)
- u t ( x , 0 ) = c ϕ ′ ( x ) u_t(x,0) = c \phi'(x) ut(x,0)=cϕ′(x)
满足初始条件。故解为:
u ( x , t ) = ϕ ( x + c t ) \boxed{u(x,t) = \phi(x + ct)} u(x,t)=ϕ(x+ct)
-
在区域 0 < x < c t 0 < x < ct 0<x<ct:
该区域内的点已受到边界影响。通解仍为 u ( x , t ) = f ( x − c t ) + g ( x + c t ) u(x,t) = f(x - ct) + g(x + ct) u(x,t)=f(x−ct)+g(x+ct),但需利用边界条件确定函数形式。
由边界条件 ( u x + α u t ) ∣ x = 0 = 0 (u_x + \alpha u_t)|_{x=0} = 0 (ux+αut)∣x=0=0:
u x ( 0 , t ) + α u t ( 0 , t ) = [ f ′ ( − c t ) + g ′ ( c t ) ] + α [ − c f ′ ( − c t ) + c g ′ ( c t ) ] = 0 u_x(0,t) + \alpha u_t(0,t) = [f'(-ct) + g'(ct)] + \alpha [-c f'(-ct) + c g'(ct)] = 0 ux(0,t)+αut(0,t)=[f′(−ct)+g′(ct)]+α[−cf′(−ct)+cg′(ct)]=0
整理得:
( 1 − α c ) f ′ ( − c t ) + ( 1 + α c ) g ′ ( c t ) = 0 (1 - \alpha c) f'(-ct) + (1 + \alpha c) g'(ct) = 0 (1−αc)f′(−ct)+(1+αc)g′(ct)=0
令 z = c t > 0 z = ct > 0 z=ct>0,则:
( 1 − α c ) f ′ ( − z ) + ( 1 + α c ) g ′ ( z ) = 0 ⟹ f ′ ( − z ) = − 1 + α c 1 − α c g ′ ( z ) (1 - \alpha c) f'(-z) + (1 + \alpha c) g'(z) = 0 \implies f'(-z) = -\frac{1 + \alpha c}{1 - \alpha c} g'(z) (1−αc)f′(−z)+(1+αc)g′(z)=0⟹f′(−z)=−1−αc1+αcg′(z)
定义常数 k = − 1 + α c 1 − α c k = -\frac{1 + \alpha c}{1 - \alpha c} k=−1−αc1+αc,则:
f ′ ( − z ) = k g ′ ( z ) f'(-z) = k g'(z) f′(−z)=kg′(z)
在区域 0 < x < c t 0 < x < ct 0<x<ct,有 x − c t < 0 x - ct < 0 x−ct<0 和 x + c t > 0 x + ct > 0 x+ct>0,故需将 f f f 扩展到负自变量。由初始条件(在 t = 0 , x > 0 t=0, x>0 t=0,x>0):
f ( x ) + g ( x ) = ϕ ( x ) , − f ′ ( x ) + g ′ ( x ) = ϕ ′ ( x ) f(x) + g(x) = \phi(x), \quad -f'(x) + g'(x) = \phi'(x) f(x)+g(x)=ϕ(x),−f′(x)+g′(x)=ϕ′(x)
解得 g ′ ( x ) = ϕ ′ ( x ) ⇒ g ( x ) = ϕ ( x ) + C g'(x) = \phi'(x) \Rightarrow g(x) = \phi(x) + C g′(x)=ϕ′(x)⇒g(x)=ϕ(x)+C, f ′ ( x ) = 0 ⇒ f ( x ) = A f'(x) = 0 \Rightarrow f(x) = A f′(x)=0⇒f(x)=A(常数),且 A + C = 0 A + C = 0 A+C=0,故 g ( x ) = ϕ ( x ) − A g(x) = \phi(x) - A g(x)=ϕ(x)−A。
对负自变量 w < 0 w < 0 w<0,由 f ′ ( − z ) = k g ′ ( z ) f'(-z) = k g'(z) f′(−z)=kg′(z) 和 g ′ ( z ) = ϕ ′ ( z ) g'(z) = \phi'(z) g′(z)=ϕ′(z),令 w = − z < 0 w = -z < 0 w=−z<0,则:
f ′ ( w ) = k ϕ ′ ( − w ) f'(w) = k \phi'(-w) f′(w)=kϕ′(−w)
积分得:
f ( w ) = k ∫ ϕ ′ ( − w ) d w = k ∫ ϕ ′ ( u ) ( − d u ) ( u = − w ) = − k ∫ ϕ ′ ( u ) d u = − k ϕ ( u ) + B = − k ϕ ( − w ) + B f(w) = k \int \phi'(-w) dw = k \int \phi'(u) (-du) \quad (u = -w) = -k \int \phi'(u) du = -k \phi(u) + B = -k \phi(-w) + B f(w)=k∫ϕ′(−w)dw=k∫ϕ′(u)(−du)(u=−w)=−k∫ϕ′(u)du=−kϕ(u)+B=−kϕ(−w)+B
其中 B B B 为积分常数。在 w = 0 w = 0 w=0 处,假设连续性:
lim w → 0 − f ( w ) = − k ϕ ( 0 ) + B , lim w → 0 + f ( w ) = A ⟹ A = − k ϕ ( 0 ) + B \lim_{w \to 0^-} f(w) = -k \phi(0) + B, \quad \lim_{w \to 0^+} f(w) = A \implies A = -k \phi(0) + B w→0−limf(w)=−kϕ(0)+B,w→0+limf(w)=A⟹A=−kϕ(0)+B
因此 B − A = k ϕ ( 0 ) B - A = k \phi(0) B−A=kϕ(0)。解为:
u ( x , t ) = f ( x − c t ) + g ( x + c t ) = [ − k ϕ ( − ( x − c t ) ) + B ] + [ ϕ ( x + c t ) − A ] = − k ϕ ( c t − x ) + ϕ ( x + c t ) + ( B − A ) u(x,t) = f(x - ct) + g(x + ct) = [-k \phi(-(x - ct)) + B] + [\phi(x + ct) - A] = -k \phi(ct - x) + \phi(x + ct) + (B - A) u(x,t)=f(x−ct)+g(x+ct)=[−kϕ(−(x−ct))+B]+[ϕ(x+ct)−A]=−kϕ(ct−x)+ϕ(x+ct)+(B−A)
代入 B − A = k ϕ ( 0 ) B - A = k \phi(0) B−A=kϕ(0),并定义 r = − k = 1 + α c 1 − α c r = -k = \frac{1 + \alpha c}{1 - \alpha c} r=−k=1−αc1+αc(反射系数),则:
u ( x , t ) = ϕ ( x + c t ) − k ϕ ( c t − x ) + k ϕ ( 0 ) = ϕ ( x + c t ) + r ( ϕ ( 0 ) − ϕ ( c t − x ) ) u(x,t) = \phi(x + ct) - k \phi(ct - x) + k \phi(0) = \phi(x + ct) + r \left( \phi(0) - \phi(ct - x) \right) u(x,t)=ϕ(x+ct)−kϕ(ct−x)+kϕ(0)=ϕ(x+ct)+r(ϕ(0)−ϕ(ct−x))
验证边界和连续性:- 在 x = c t x = ct x=ct,两区域解均为 ϕ ( 2 c t ) \phi(2ct) ϕ(2ct),连续。
- 边界条件 ( u x + α u t ) ∣ x = 0 = 0 (u_x + \alpha u_t)|_{x=0} = 0 (ux+αut)∣x=0=0 满足(计算略)。
故解为:
u ( x , t ) = ϕ ( x + c t ) + 1 + α c 1 − α c ( ϕ ( 0 ) − ϕ ( c t − x ) ) \boxed{u(x,t) = \phi(x + ct) + \dfrac{1 + \alpha c}{1 - \alpha c} \left( \phi(0) - \phi(ct - x) \right)} u(x,t)=ϕ(x+ct)+1−αc1+αc(ϕ(0)−ϕ(ct−x))
(b) 讨论反射波,特别考虑 ϕ ( x ) = e i k x \phi(x) = e^{ikx} ϕ(x)=eikx
在波动问题中,解由入射波和反射波组成:
- 入射波:向左传播的波 ϕ ( x + c t ) \phi(x + ct) ϕ(x+ct)。
- 反射波:向右传播的波,在区域 0 < x < c t 0 < x < ct 0<x<ct 中出现,形式为 − 1 + α c 1 − α c ϕ ( c t − x ) -\dfrac{1 + \alpha c}{1 - \alpha c} \phi(ct - x) −1−αc1+αcϕ(ct−x)(不含常数项)。
反射波的振幅和相位由反射系数 r = 1 + α c 1 − α c r = \dfrac{1 + \alpha c}{1 - \alpha c} r=1−αc1+αc 决定:
- 在边界 x = 0 x = 0 x=0,入射波振幅为 ϕ ( c t ) \phi(ct) ϕ(ct),反射波振幅为 ∣ r ∣ ⋅ ∣ ϕ ( c t ) ∣ |r| \cdot |\phi(ct)| ∣r∣⋅∣ϕ(ct)∣。
- 相位关系取决于 r r r 的符号:若 r > 0 r > 0 r>0,同相;若 r < 0 r < 0 r<0,反相。
特殊情况: ϕ ( x ) = e i k x \phi(x) = e^{ikx} ϕ(x)=eikx
此时初始波为单频波,解为:
- 在 x > c t x > ct x>ct:
u ( x , t ) = e i k ( x + c t ) u(x,t) = e^{ik(x + ct)} u(x,t)=eik(x+ct) - 在 0 < x < c t 0 < x < ct 0<x<ct:
u ( x , t ) = e i k ( x + c t ) + r ( 1 − e i k ( c t − x ) ) , r = 1 + α c 1 − α c u(x,t) = e^{ik(x + ct)} + r \left( 1 - e^{ik(ct - x)} \right), \quad r = \dfrac{1 + \alpha c}{1 - \alpha c} u(x,t)=eik(x+ct)+r(1−eik(ct−x)),r=1−αc1+αc
其中:- 入射波: e i k ( x + c t ) e^{ik(x + ct)} eik(x+ct)(向左传播)。
- 反射波: − r e i k ( c t − x ) -r e^{ik(ct - x)} −reik(ct−x)(向右传播),常数项 r r r 为静态位移。
在边界 x = 0 x = 0 x=0:
- 入射波: e i k c t e^{ikct} eikct(振幅 1)。
- 反射波: − r e i k c t -r e^{ikct} −reikct(振幅 ∣ r ∣ |r| ∣r∣)。
反射系数为 − r = − 1 + α c 1 − α c -r = -\dfrac{1 + \alpha c}{1 - \alpha c} −r=−1−αc1+αc,振幅比为 ∣ r ∣ |r| ∣r∣。
物理讨论:
- 若 α c = 0 \alpha c = 0 αc=0(即 α = 0 \alpha = 0 α=0),则 r = 1 r = 1 r=1,反射波振幅与入射波相同,相位相反(固定端反射)。
- 若 α c = − 1 \alpha c = -1 αc=−1,则 r = 0 r = 0 r=0,无反射波(自由端或阻抗匹配)。
- 若 ∣ α c ∣ > 1 |\alpha c| > 1 ∣αc∣>1,需注意分母为零或复数情况,但假设参数使解有定义。
反射波的性质由参数 α \alpha α 和 c c c 共同决定,影响波的能量反射和透射。