当前位置: 首页 > news >正文

【MATLAB代码】基于MVC的EKF和经典EKF对三维非线性状态的滤波,提供滤波值对比、误差对比,应对跳变的观测噪声进行优化

在这里插入图片描述

本文所述的代码实现了改进的扩展卡尔曼滤波算法(MVC-EKF),针对三维运动估计场景,与经典EKF算法进行性能对比。代码通过引入Versoria函数优化协方差更新过程,显著提升了在测量异常值干扰下的状态估计鲁棒性。

文章目录

  • 代码概述
    • 算法原理
    • 公式对比与优化机制
  • 运行结果
  • MATLAB源代码

代码概述

本代码实现了一种改进的扩展卡尔曼滤波算法(MVC-EKF),针对三维运动估计场景,与经典EKF算法进行性能对比。代码通过引入Versoria函数优化协方差更新过程,显著提升了在测量异常值干扰下的状态估计鲁棒性。主要特性包括:

  • 应用场景:目标跟踪、动态系统状态估计、自动驾驶定位等需抑制测量噪声的领域。
  • 核心创新:在EKF框架中嵌入Versoria权重函数,动态调节卡尔曼增益,降低异常值对估计的影响。
  • 实验设计:在10-30时间步注入高强度异常值,验证算法抗干扰能力。
  • 性能评估:提供多维状态误差分析、统计指标(RMSE/标准差/最大值)对比及可视化。

算法原理

  1. 经典EKF流程

    • 预测步:通过非线性状态转移函数 x p r e d = f ( x k − 1 ) x_{pred} = f(x_{k-1}) xpred=f(xk1)计算先验状态,线性化后更新协方差 P p r e d P_{pred} Ppred
    • 更新步:根据测量残差计算卡尔曼增益 K K K,修正先验状态得到后验估计 x e s t x_{est} xest
  2. MVC-EKF改进

    • Versoria权重函数:定义 M V C ( y , y p r e d , R ) = exp ⁡ ( − 0.5 ( y − y p r e d ) 2 / R ) MVC(y, y_{pred}, R) = \exp(-0.5(y - y_{pred})^2/R) MVC(y,ypred,R)=exp(0.5(yypred)2/R),根据测量残差动态生成权重 w m v c w_{mvc} wmvc
    • 抗差机制:在状态更新时引入权重 x e s t = x p r e d + w m v c ⋅ K ⋅ ( y − y p r e d ) x_{est} = x_{pred} + w_{mvc} \cdot K \cdot (y - y_{pred}) xest=xpred+wmvcK(yypred),当残差过大时自动降低异常测量值的修正权重。

公式对比与优化机制

步骤传统EKFMVC-EKF优化原理
状态更新直接修正所有残差残差加权修正抑制异常值影响
协方差更新固定增益调节动态权重调节协方差矩阵提升滤波器鲁棒性
噪声处理固定( R )隐含噪声统计自适应(通过权重衰减)近似实现噪声协方差自适应

运行结果

滤波后的状态曲线和真值曲线对比:
在这里插入图片描述
状态误差曲线对比:
在这里插入图片描述

程序结构:
在这里插入图片描述

MATLAB源代码

部分源代码如下:

% 基于MVC的EKF,含有与EKF的对比三维平面的运动估计
% 核心:目标跟踪或状态估计,通过Versoria函数优化协方差更新
% 2025-06-24/Ver1clear; clc; close all;
rng(0);
%% 系统模型定义
% 定义状态空间模型
% x(k+1) = f(x(k)) + w(k)
% y(k) = h(x(k)) + v(k)% 非线性状态转移函数
f = @(x) [x(1) + 1;  x(2) + 2; x(3)+1];
% 非线性观测函数(距离与角度)
h = @(x) [x(1)^0.5; x(2)^0.5; x(3)+x(1)];% f 和 h 的雅可比矩阵
F = @(x) [1, 0, 0;0, 1, 0;0, 0, 1]; % f 的雅可比矩阵
% H = @(x) [2 * x(1), 1];     % h 的雅可比矩阵
H = @(x) [0.5*x(1)^(-0.5),0,0;0,0.5*x(2)^(-0.5),0;0,0,0.5*x(3)^(-0.5)];     % h 的雅可比矩阵% 噪声协方差矩阵
Q = 0.01 * eye(3); % 过程噪声协方差
R = diag([1,1,1]);           % 测量噪声协方差%% 仿真参数
n = 3;      % 状态维度
N = 100;     % 时间步数
x_true = zeros(n, N); % 真实状态
x_est_ekf = zeros(n, N);  % MCC 估计状态
x_est_mvc = zeros(n, N);  % MVC 估计状态
y_meas = zeros(3, N);     % 测量值% 初始状态
x_true(:, 1) = [10; 1;1];
x_est_ekf(:, 1) = [10; 1;1];
x_est_mvc(:, 1) = [10; 1;1];% 随机生成有噪声的测量值
for k = 1:Ny_meas(:,k) = h(x_true(:, k)) + diag(sqrt(R) ).* randn;if 10<k && k<30y_meas(:,k) = h(x_true(:, k)) + diag(sqrt(R) ) * randn + 10; %特定时刻的异常值endif k < Nx_true(:, k+1) = f(x_true(:, k)) + sqrt(Q) * randn(n, 1);end
end

完整代码:

如需帮助,或有导航、定位滤波相关的代码定制需求,请点击下方卡片联系作者

http://www.lqws.cn/news/503551.html

相关文章:

  • 安全报告:LLM 模型在无显性攻击提示下的越狱行为分析
  • SSE和Kafka应用场景对比
  • taro小程序,tailwindcss的bg-x-x,背景颜色不生效,只有自定义的写法颜色才生效
  • Qt面试题汇总
  • 在微服务中使用 Sentinel
  • PYTHON从入门到实践3-变量
  • LayUI的table实现行上传图片+mvc
  • JavaEE初阶第四期:解锁多线程,从 “单车道” 到 “高速公路” 的编程升级(二)
  • 在 .NET Core WebAPI 项目中,执行文件(.exe)方式运行并指定端口
  • Python实例题:Web 爬虫与数据可视化
  • 《AI大模型核心技术揭秘与商业落地实战》学习内容系统总结
  • Android APP内切换语言无感重启到当前界面
  • Jenkins+Jmeter+Ant接口持续集成
  • 6.24_JAVA_微服务_Elasticsearch搜索
  • Temporal Join,一探究竟
  • 【服务器】教程 — Linux上如何挂载服务器NAS
  • GitHub Actions 的深度解析与概念介绍
  • 智能制造——解读基于AI框架的智能工厂设计思路【附全文阅读】
  • 【论文阅读 | CVPRW 2023 |CSSA :基于通道切换和空间注意力的多模态目标检测】
  • CSS 实现文本溢出省略号(三种主流方式,适配单行 多行)
  • PHP 华为云H5上传文件:临时链接上传文件和POST表单直传
  • 华为云Flexus+DeepSeek征文|基于华为云Flexus Dify复用优秀 AI Agent 应用教程
  • Elasticsearch | 索引和模板字段管理:增加新字段的详细操作
  • 《C++初阶之类和对象》【初始化列表 + 自定义类型转换 + static成员】
  • React性能优化精髓之一:频繁setState导致滚动卡顿的解决方案
  • Jmeter接口自动化测试框架
  • 从零开始学习Spring Cloud Alibaba (一)
  • Gradio可视化构建聊天机器人
  • 开源模型应用落地-让AI更懂你的每一次交互-用Redis Stack与LangChain解锁大模型的长期记忆潜能(二)
  • 前端后端文件下载防抖实现方案