当前位置: 首页 > news >正文

将ONNX模型转换为(OPENMV可用的格式)TensorFlow Lite格式


将ONNX模型转换为TensorFlow Lite格式

在深度学习模型部署过程中,我们常常需要将模型从一种格式转换为另一种格式,以适应不同的硬件平台和应用场景。本文将详细介绍如何将ONNX格式的模型转换为TensorFlow Lite格式,以便在移动设备或嵌入式设备上进行高效部署。

1. 背景介绍

ONNX(Open Neural Network Exchange)是一种开放的格式,用于表示深度学习模型,使得模型可以在不同的框架之间进行转换和共享。TensorFlow Lite是TensorFlow的轻量级版本,专为移动和嵌入式设备设计,具有高效的推理性能和较小的模型体积。将ONNX模型转换为TensorFlow Lite格式,可以帮助我们在资源受限的设备上运行复杂的深度学习模型。

2. 转换步骤

2.1 将ONNX模型转换为TensorFlow模型

ONNX模型不能直接转换为TensorFlow Lite格式,必须先转换为TensorFlow模型。我们可以使用onnx-tensorflow库或onnx2tf工具来完成这一步。

使用onnx2tf工具

onnx2tf是一个强大的工具,可以将ONNX模型转换为TensorFlow或TensorFlow Lite格式。以下是使用onnx2tf的基本步骤:

  1. 安装onnx2tf

    pip install onnx2tf
    
  2. 转换模型

    onnx2tf -i input_model.onnx -cotof
    

    其中-cotof表示将模型转换为TensorFlow Lite格式。
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

2.2 将TensorFlow模型转换为TensorFlow Lite格式

转换完成后,可以使用TensorFlow Lite Converter将TensorFlow模型进一步转换为TensorFlow Lite格式。

示例代码
import tensorflow as tf# 加载TensorFlow模型
model = tf.saved_model.load('path/to/tensorflow_model')# 创建TensorFlow Lite Converter
converter = tf.lite.TFLiteConverter.from_saved_model('path/to/tensorflow_model')# 转换为TensorFlow Lite模型
tflite_model = converter.convert()# 保存TensorFlow Lite模型
with open('model.tflite', 'wb') as f:f.write(tflite_model)

2.3 可选:模型量化

为了进一步优化模型性能,可以对TensorFlow Lite模型进行量化。例如,使用INT8量化:

converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.inference_input_type = tf.int8
converter.inference_output_type = tf.int8
tflite_quant_model = converter.convert()with open('model_quantized.tflite', 'wb') as f:f.write(tflite_quant_model)

3. 注意事项

  • 转换兼容性:转换过程中可能会遇到某些ONNX操作不被TensorFlow支持的情况,需要提前检查模型中的操作是否兼容。
  • 动态输入形状:如果模型包含动态输入形状,可能需要额外处理以确保转换成功。
  • Python版本onnx2tf推荐使用Python 3.10版本。确保安装的onnx2tf版本与你的TensorFlow版本兼容。

4. 安装onnx2tf的推荐步骤

以下是在Python 3.10环境下安装onnx2tf的推荐步骤:

conda create -n onnx2tf python=3.10
conda activate onnx2tf
pip install onnx==1.16.1 tensorflow==2.17.0
pip install onnx2tf

5. 网络问题与镜像源

如果在安装过程中遇到网络问题,可以尝试切换到其他国内镜像源,例如:

  • 清华大学:https://pypi.tuna.tsinghua.edu.cn/simple
  • 阿里云:https://mirrors.aliyun.com/pypi/simple/
  • 中国科技大学:https://pypi.mirrors.ustc.edu.cn/simple/

在命令中指定镜像源:

pip install onnx==1.16.1 tensorflow==2.17.0 -i https://mirrors.aliyun.com/pypi/simple/

确保你的网络可以正常访问上述镜像源。如果网络有问题,可以尝试更换网络环境。


失败了真服了:

在这里插入图片描述
ai-edge-litert没有window版本,呜呜呜太伤心了,浪费我几个小时

下面换一种办法:

使用onnx

http://www.lqws.cn/news/549235.html

相关文章:

  • Spring Cloud 微服务(服务注册与发现原理深度解析)
  • python基于Django+mysql实现的图书管理系统【完整源码+数据库】
  • uv包管理常用命令
  • Stable Diffusion 3终极提示词库:2000个工业设计场景生成公式(2025企业级实战指南)
  • [Ethernet in CANoe]1--SOME/IP arxml文件格式的区别
  • 动手学Python:从零开始构建一个“文字冒险游戏”
  • 记忆化搜索(dfs+memo)无环有向图
  • ubuntu22上安装redis6
  • 【开发杂谈】Auto Caption:使用 Electron 和 Python 开发实时字幕显示软件
  • JAX study notes[7]
  • uniapp消息推送
  • Springboot中常用的注解(分层整理)
  • Redis主从复制原理
  • CI/CD的常规设置及核心原理
  • 【大数据】大数据产品基础篇
  • OpenCV图像添加水印
  • Java底层原理:深入理解JVM类加载机制与反射机制
  • nginx:配置反向代理后不生效
  • 智能实验室革命:Deepoc大模型驱动全自动化科研新生态
  • could not import google.golang.org/protobuf/proto
  • 前沿融合:机器学习如何重塑智能水泥基复合材料研发范式
  • 学习设计模式《十五》——模板方法模式
  • 多张图片生成PDF每张图片生成pdf的一页
  • Windows Server 2019 查询远程登录源 IP 地址(含 RDP 和网络登录)
  • 论云原生架构及应用
  • AcWing--数据结构(二)
  • clion配置旧的C项目为CMake项目工程
  • 生成树基础实验
  • 【C++】atoi和std::stoi
  • 本年度TOP5服装收银系统对比推荐