当前位置: 首页 > news >正文

第10.4篇 使用预训练的目标检测网络

在PyTorch提供的已经训练好的图像目标检测中,均是R-CNN系列

的网络,并且针对目标检测和人体关键点检测分别提供了容易调用的方

法。针对目标检测的网络,输入图像均要求使用相同的预处理方式,即先将每张图像的像素值预处理到0~1之间,且输人的图像尺寸不是很小即可直接

调用。已经预训练的可供使用的网络模型如表10-2所示。

 首先定义每个类别所对应的标签COCO_INSTANCE_CATEGORY_NAMES,程序如下:

上面的程序在可视化图像时,使用ImageDraw.Draw(image)方法,表示要在原始的image图像上相应的位置添加一些元素,draw.rectangle(表示要添加矩形框,draw.text()表示在图像上指定位置添加文本。运行程序后,可得到图10-14所示的目标检测结果。 

 

 

http://www.lqws.cn/news/572005.html

相关文章:

  • 学习使用Visual Studio分析.net内存转储文件的基本用法
  • C# 委托(调用带引用参数的委托)
  • 计算机组成原理与体系结构-实验四 微程序控制器 (Proteus 8.15)
  • 【硬核数学】3. AI如何应对不确定性?概率论为模型注入“灵魂”《从零构建机器学习、深度学习到LLM的数学认知》
  • 【HuggingFace】模型下载至本地访问
  • SpringMVC实战:从配置到JSON处理全解析
  • 开源免费计划工具:帮你高效规划每一天
  • UE5 Grid3D 学习笔记
  • 什么是IPFS(InterPlanetary File System,星际文件系统)
  • c# 在sql server 数据库中批插入数据
  • C++ 格式化输入输出
  • 「Java案例」输出24个希腊字母
  • 计算机组成原理与体系结构-实验一 进位加法器(Proteus 8.15)
  • Linux下的调试器-gdb(16)
  • 信息安全与网络安全---引言
  • 矩阵的定义和运算 线性代数
  • 设计模式 | 组合模式
  • VMware设置虚拟机为固定IP
  • Transformer结构与代码实现详解
  • redisson看门狗实现原理
  • Linux基本命令篇 —— head命令
  • 【锁相环系列5】再谈数字锁相环
  • python sklearn 机器学习(1)
  • 多模态大语言模型arxiv论文略读(143)
  • 代理模式 - Flutter中的智能替身,掌控对象访问的每一道关卡!
  • ⚙️ 深度学习模型编译器实战:解锁工业级部署新范式​​—— 基于PyTorch-MLIR的全流程优化指南(开源工具链集成)​​
  • Python银行管理系统01升级(适合初学者)
  • 【百日精通JAVA | 语法篇】static关键字
  • CppCon 2017 学习:Undefined Behavior in 2017
  • idea运行到远程机器 和 idea远程JVM调试