当前位置: 首页 > news >正文

Clickhouse官方文档学习笔记

文章目录

  • What is ClickHouse?
    • Data Replication and Integrity
    • Approximate calculation
    • Superior query performance
  • Quick Start

What is ClickHouse?

ClickHouse® is a high-performance, column-oriented SQL database management system (DBMS) for online analytical processing (OLAP)
关键词: high-performance, column-based, OLAP

Data Replication and Integrity

ClickHouse uses an asynchronous multi-master replication scheme to ensure that data is stored redundantly on multiple nodes. After being written to any available replica, all the remaining replicas retrieve their copy in the background. The system maintains identical data on different replicas. Recovery after most failures is performed automatically, or semi-automatically in complex cases.
依然是sharding+replica的思路, 跟绝大多数cluster一样

Approximate calculation

ClickHouse provides ways to trade accuracy for performance. For example, some of its aggregate functions calculate the distinct value count, the median, and quantiles approximately. Also, queries can be run on a sample of the data to compute an approximate result quickly. Finally, aggregations can be run with a limited number of keys instead of for all keys. Depending on how skewed the distribution of the keys is, this can provide a reasonably accurate result that uses far fewer resources than an exact calculation.
近似/采样计算确实是个新鲜玩意

Superior query performance

ClickHouse is well known for having extremely fast query performance. To learn why ClickHouse is so fast, see the Why is ClickHouse fast? guide.
最大的卖点来了, 就是快。

Quick Start

略过

唯一值得注意的可能就是尽量使用呢bulk insert。数据可以先写到本地postgres或者s3然后一次性导入。

Done on 2025-06-22


http://www.lqws.cn/news/475993.html

相关文章:

  • FastAPI 入门教程 #06:FastAPI 请求体和数据模型
  • 从零理解鱼眼相机的标定与矫正(含 OpenCV 代码与原理讲解)
  • PostgreSQL全栈部署指南:从零构建企业级高可用数据库集群
  • React Next快速搭建前后端全栈项目并部署至Vercel
  • 《DeepSeek原生应用与智能体开发实践》案例重现
  • 关于数学函数和数据类型扩展的详细讲解(从属GESP二级)
  • 30天pytorch从入门到熟练(day1)
  • Mybatis-Plus支持多种数据库
  • 【机器学习四大核心任务类型详解】分类、回归、聚类、降维智能决策指南
  • 多项目预算如何集中管控与动态调整
  • 将Linux装进口袋: Ubuntu to Go 制作
  • 【Linux】进程间多种通信方式对比
  • Typescript基础
  • 【后端】负载均衡
  • MiniMax-M1 开源,Kimi 深度研究内测,GPT-5 今夏发布,Gemini 2.5 稳定上线!| AI Weekly 6.16-22
  • 大模型MetaGPT面试题汇总及参考答案
  • Python-break、continue与else语句
  • OJ搭建:Judge0服务器、DeepSeek服务接入简介
  • 70、爬楼梯
  • 相机camera开发之差异对比核查四:测试机和对比机的Camera动态参数差异对比及关键字
  • 笨方法学python-习题1
  • 设计模式精讲 Day 10:外观模式(Facade Pattern)
  • 无锡哲讯科技:助力纺织业搭乘 SAP 数字化快车
  • [xiaozhi-esp32] 应用层(9种state) | 音频编解码层 | 双循环架构
  • OpenGL ES 中的材质
  • 《高等数学》(同济大学·第7版)第五章 定积分 第二节微积分基本公式
  • ASP.NET Core API文档与测试实战指南
  • 创建 Vue 3.0 项目的两种方法对比:npm init vue@latest vs npm init vite@latest
  • Perplexity AI:对话式搜索引擎的革新者与未来认知操作系统
  • 腾讯AI音乐黑科技,LeVo引领音色与创作新风潮