当前位置: 首页 > news >正文

DAY43打卡

@浙大疏锦行

kaggle找到一个图像数据cnn网络进行训练并且grad-cam可视化

进阶并拆分成多个文件

fruit_cnn_project/
├─ data/                # 存放数据集(需手动创建,后续放入图片)
│  ├─ train/            # 训练集图像
│  └─ val/              # 验证集图像
├─ models/              # 模型定义
│  └─ cnn_model.py      # CNN网络结构
├─ utils/               # 工具函数
│  ├─ dataset_utils.py  # 数据加载与预处理
│  ├─ grad_cam.py       # Grad-CAM可视化
│  └─ train_utils.py    # 训练与评估
├─ main.py              # 主程序
└─ requirements.txt     # 依赖列表(可选)
# 第一部分:导入库
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline# 第二部分:数据加载与预处理
def load_data():data_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])train_dataset = datasets.ImageFolder(root='data/train', transform=data_transform)train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=32, shuffle=True)test_dataset = datasets.ImageFolder(root='data/test', transform=data_transform)test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=32, shuffle=False)return train_loader, test_loader# 第三部分:模型定义
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)self.relu = nn.ReLU()self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)self.fc1 = nn.Linear(32 * 56 * 56, 128)self.fc2 = nn.Linear(128, 2)def forward(self, x):x = self.pool(self.relu(self.conv1(x)))x = self.pool(self.relu(self.conv2(x)))x = x.view(-1, 32 * 56 * 56)x = self.relu(self.fc1(x))x = self.fc2(x)return x# 第四部分:模型训练
train_loader, _ = load_data()
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
num_epochs = 10for epoch in range(num_epochs):running_loss = 0.0for i, data in enumerate(train_loader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')torch.save(model.state_dict(), 'trained_model.pth')# 第五部分:模型测试
_, test_loader = load_data()
model = SimpleCNN()
model.load_state_dict(torch.load('trained_model.pth'))
model.eval()
correct = 0
total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the test images: {100 * correct / total}%')# 第六部分:Grad-CAM可视化(修复版)
def get_activation():activation = {}def hook(model, input, output):activation['target_layer'] = output.detach()return hook, activationdef grad_cam(model, image, target_class_index):hook, activation = get_activation()target_layer = model.conv2target_layer.register_forward_hook(hook)model.eval()image = image.unsqueeze(0)image.requires_grad_(True)output = model(image)one_hot = torch.zeros(1, output.size()[-1]).to(image.device)one_hot[0][target_class_index] = 1output.backward(gradient=one_hot, retain_graph=True)gradients = image.grad[0].cpu().numpy()# 从activation字典中获取激活图activation_map = activation['target_layer'].cpu().numpy()[0]weights = np.mean(gradients, axis=(1, 2))cam = np.zeros(activation_map.shape[1:], dtype=np.float32)for i, w in enumerate(weights):cam += w * activation_map[i]cam = np.maximum(cam, 0)cam = F.interpolate(torch.from_numpy(cam).unsqueeze(0).unsqueeze(0), size=(224, 224), mode='bilinear', align_corners=False)[0][0].numpy()cam = (cam - cam.min()) / (cam.max() - cam.min())return cam# 可视化前几张测试图片
dataiter = iter(test_loader)
images, labels = dataiter.next()for i in range(5):  # 可视化前5张图片image = images[i]label = labels[i].item()cam = grad_cam(model, image, label)plt.figure(figsize=(10, 5))plt.subplot(1, 2, 1)plt.imshow(image.permute(1, 2, 0).numpy())plt.title(f'Original Image (Class: {label})')plt.axis('off')plt.subplot(1, 2, 2)plt.imshow(image.permute(1, 2, 0).numpy())plt.imshow(cam, cmap='jet', alpha=0.5)plt.title('Grad-CAM Visualization')plt.axis('off')plt.tight_layout()plt.show()

http://www.lqws.cn/news/76555.html

相关文章:

  • 力扣LeetBook数组和字符串--数组简介
  • 力扣HOT100之动态规划:32. 最长有效括号
  • 20250602在荣品的PRO-RK3566开发板的Android13下的uboot启动阶段配置BOOTDELAY为10s
  • 代码随想录算法训练营第四天| 242.有效的字母异位词 、 349. 两个数组的交集 、 202. 快乐数 、1. 两数之和
  • 5.RV1126-OPENCV 图形计算面积
  • Android基于LiquidFun引擎实现软体碰撞效果
  • android binder(二)应用层编程实例
  • 循序渐进 Android Binder(一):IPC 基本概念和 AIDL 跨进程通信的简单实例
  • 基于 Android 和 JBox2D 的简单小游戏
  • 实验一:PyTorch基本操作实验
  • 力扣热题100之对称二叉树
  • LeetCode 热题 100 394. 字符串解码
  • C#项目07-二维数组的随机创建
  • CppCon 2014 学习:Exception-Safe Coding
  • Python----目标检测(《YOLOv3:AnIncrementalImprovement》和YOLO-V3的原理与网络结构)
  • Python----目标检测(训练YOLOV8网络)
  • FreeBSD 14.3 候选版本附带 Docker 镜像和关键修复
  • 嵌入式鸿蒙开发环境搭建操作方法与实现
  • web架构3------(nginx的return跳转,gzip压缩,目录浏览,访问控制和location符号优先级)
  • 分布式锁剖析
  • 2025/6月最新Cursor(0.50.5版本)一键自动更换邮箱无限续杯教程
  • 05.MySQL表的约束
  • 牛客小白月赛117
  • Linux 权限管理入门:从基础到实践
  • OpenCV4.4.0下载及初步配置(Win11)
  • PCA(K-L变换)人脸识别(python实现)
  • 从【0-1的HTML】第1篇:HTML简介
  • C++ - 标准库之 <sstream> ostringstream(ostringstream 概述、基本使用、清空内容、进阶使用)
  • 房屋租赁系统 Java+Vue.js+SpringBoot,包括房屋信息、看房申请、租赁合同、房屋报修、收租信息、维修数据、租客管理、公告管理模块
  • 系统调用与程序接口的关系